Что такое раздел пзу. Разница между озу и пзу. Масочные ПЗУ на основе матрицы биполярных транзисторов

Постоянные запоминающие устройства (ПЗУ) предназначены для постоянного, энергонезависимого хранения информации.

По способу записи ПЗУ классифицируют следующим образом:

  1. однократно программируемые маской на предприятии-изготовителе;
  2. однократно программируемые пользователем с помощью специальных устройств, называемых программаторами - ППЗУ ;
  3. перепрограммируемые, или репрограммируемые ПЗУ - РПЗУ .

Масочные ПЗУ

Программирование масочных ПЗУ происходит в процессе изготовления БИС. Обычно на кристалле полупроводника вначале создаются все запоминающие элементы (ЗЭ) , а затем на заключительных технологических операциях с помощью фотошаблона слоя коммутации реализуются связи между линиями адреса, данных и собственно запоминающим элементом. Этот шаблон (маска) выполняется в соответствии с пожеланиями заказчика по картам заказа. Перечень возможных вариантов карт заказов приводится в технических условиях на ИМС ПЗУ . Такие ПЗУ изготавливаются на основе матриц диодов, биполярных или МОП-транзисторов.

Масочные ПЗУ на основе диодной матрицы

Схема такого ПЗУ представлена на рис. 12.1 . Здесь горизонтальные линии – адресные, а вертикальные – это линии данных, с них в данном случае снимаются 8-разрядные двоичные числа. В данной схеме ЗЭ – это условное пересечение линии адреса и линии данных. Выбор всей строки ЗЭ производится при подаче логического нуля на линию адреса ЛА i c соответствующего выхода дешифратора. В выбранный ЗЭ записывается логический 0 при наличии диода на пересечении линии D i и ЛА i , т.к. в этом случае замыкается цепь: + 5 В, диод, земля на адресной линии. Так, в данном ПЗУ при подаче адреса 11 2 активный нулевой сигнал появляется на адресной линии ЛА 3 , на ней будет уровень логического 0, на шине данных D 7 D 0 появится информация 01100011 2 .

Масочные ПЗУ на основе матрицы МОП-транзисторов

Пример схемы данного ПЗУ представлен на рис. 12.2 . Запись информации осуществляется подключением или неподключением МОП-транзистора в соответствующих точках БИС. При выборе определенного адреса на соответствующей адресной линии ЛА i появляется активный сигнал логической 1, т.е. потенциал, близкий к потенциалу источника питания + 5 В. Данная логическая 1 подается на затворы всех транзисторов строки и открывает их. Если сток транзистора металлизирован, на соответствующей линии данных D i появляется потенциал порядка 0,2 0,3 В, т.е. уровень логического 0. Если же сток транзистора не металлизирован, указанная цепь не реализована, на сопротивлении R i не будет падения напряжения, т.е. в точке D i будет потенциал +5 В, т.е. уровень логической 1. Например, если в показанном на рис. 12.2 ПЗУ на адрес подать код 01 2 , на линии адреса ЛА 1 будет активный уровень 1, а на шине данных D 3 D 0 будет код 0010 2 .

Масочные ПЗУ на основе матрицы биполярных транзисторов

Пример схемы данного ПЗУ представлен на рис. 12.3 . Запись информации осуществляется также металлизацией или неметаллизацей участка между базой и адресной линией. Для выбора строки ЗЭ на линию адреса ЛА i подается логическая 1. При металлизации она подается на базу транзистора, он открывается вследствие разницы потенциалов между эмиттером (земля) и базой (примерно + 5 В). При этом замыкается цепь: + 5 В; сопротивление R i ; открытый транзистор, земля на эмиттере транзистора. В точке D i при этом будет потенциал, соответствующий падению напряжения на открытом транзисторе – порядка 0,4 В, т.е. логический 0. Таким образом, в ЗЭ записан ноль. Если участок между линией адреса и базой транзистора не металлизован, указанная электрическая цепь не реализована, падения напряжения на сопротивлении R i нет, поэтому на соответствующей линии данных D i будет потенциал +5 В, т.е. логическая 1. При подаче, например, адреса 00 2 в приведенном на рис. 12.3 ПЗУ на ШД появится код 10 2 .

Примеры масочных ПЗУ приведены на рис. 12.4 , а в табл. 12.1 – их параметры .

Таблица 12.1. Параметры масочных ПЗУ
Обозначение БИС Технология изготовления Информационная емкость, бит Время выборки, нс
505РЕ3 pМОП 512x8 1500
К555РE4 ТТЛШ 2Кx8 800
К568РЕ1 nМОП 2Кx8 120
К596РЕ1 ТТЛ 8Кx8 350

Программируемые ПЗУ

Программируемые ПЗУ (ППЗУ ) представляют собой такие же диодные или транзисторные матрицы, как и масочные ПЗУ, но с иным исполнением ЗЭ. Запоминающий элемент ППЗУ приведен на рис. 12.5 . Доступ к нему обеспечивается подачей логического 0 на линию адреса ЛА i . Запись в него производится в результате осаждения (расплавления) плавких вставок ПВ, включенных последовательно с диодами, эмиттерами биполярных транзисторов, стоками МОП-транзисторов. Плавкая вставка ПВ представляет собой небольшой участок металлизации, который разрушается (расплавляется) при программировании импульсами тока величиной 50 100 микроампер и длительностью порядка 2 миллисекунд. Если вставка сохранена, то в ЗЭ записан логический 0, поскольку реализована цепь между источником питания и землей на ЛА i через диод (в транзисторных матрицах – через открытый транзистор). Если вставка разрушена, то указанной цепинет и в ЗЭ записана логическая 1.

Доброго времени суток.

Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.


Расшифровка и объяснение

Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится - память только для чтения.

Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?

  • Во-первых, на ней хранятся неизменяемые данные, заложенные разработчиком при изготовлении техники, то есть те, без которых ее работа невозможна.
  • Во-вторых, термин «энергонезависимый» указывает на то, что при перезагрузке системы данные с нее никуда не деваются, в отличие от того, как это происходит с оперативной памятью.

Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.

Примеры

Постоянная память в компьютере - это определенное место на материнской плате, в котором хранятся:

  • Тестовые утилиты, проверяющие правильность работы аппаратной части при каждом запуске ПК.
  • Драйвера управления главными периферийными девайсами (клавиатурой, монитором, дисководом). В свою очередь, те слоты на материнской плате, в функции которых не входит включение компьютера, не хранят свои утилиты в ROM. Ведь место ограничено.
  • Прогу начальной загрузки (BIOS), которая при включении компа запускает загрузчик операционной системы. Хотя нынешний биос может включать ПК не только с оптических и магнитных дисков, но и с USB-накопителей.

В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.

В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая - диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Виды

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

  • Первая буква добавляет слово «programmable» (программируемое). Это значит, что пользователь может один раз самостоятельно прошить устройство.

  • Еще две буквы впереди скрывают под собой формулировку «electrically erasable» (электрически стираемое). Такие ПЗУ можно перезаписывать сколько угодно. К этому типу относится флеш-память.

В принципе это всё, что я хотел сегодня до Вас донести.

Буду рад, если вы подпишетесь на обновления и будете заходить чаще.

Персональные компьютеры имеют четыре иерархических уровня памяти:

    микропроцессорная память;

    основная память;

    регистровая кэш-память;

    внешняя память.

Микропроцессорная память рассмотрена выше. Основная память предназначена для хранения и оперативного обмена информацией с другими устройствами компьютера. Функции памяти:

    прием информации от других устройств;

    запоминание информации;

    выдача информации по запросу в другие устройства машины.

Основная память содержит два вида запоминающих устройств:

    ПЗУ - постоянное запоминающее устройство;

    ОЗУ - оперативное запоминающее устройство.

ПЗУ предназначено для хранения постоянной программной и справочной информации. Данные в ПЗУ заносятся при изготовлении. Информацию, хранящуюся в ПЗУ, можно только считывать, но не изменять.

В ПЗУ находятся:

    программа управления работой процессора;

    программа запуска и останова компьютера;

    программы тестирования устройств, проверяющие при каждом включении компьютера правильность работы его блоков;

    программы управления дисплеем, клавиатурой, принтером, внешней памятью;

    информация о том, где на диске находится операционная система.

ПЗУ является энергонезависимой памятью, при отключении питания информация в нем сохраняется.

ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом компьютером в текущий период времени.

Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к памяти). Все ячейки памяти объединены в группы по 8 бит (1 байт), каждая такая группа имеет адрес, по которому к ней можно обратиться.

ОЗУ является энергозависимой памятью, при выключении питания информация в нем стирается.

В современных компьютерах объем памяти обычно составляет 8-128 Мбайт. Объем памяти - важная характеристика компьютера, она влияет на скорость работы и работоспособность программ.

Кроме ПЗУ и ОЗУ на системной плате имеется и энергонезависимая CMOS-память, постоянно питающаяся от своего аккумулятора. В ней хранятся параметры конфигурации компьютера, которые проверяются при каждом рключении системы. Это полупостоянная память. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера - SETUP.

Для ускорения доступа к оперативной памяти используется специальная сверхбыстродействующая кэш-память, которая располагается как бы «между» микропроцессором и оперативной памятью, в ней хранятся копии наиболее часто используемых участков оперативной памяти. Регистры кэш-памяти недоступны для пользователя.

В кэш-памяти хранятся данные, которые микропроцессор получил и будет использовать в ближайшие такты своей работы. Быстрый доступ к этим данным позволяет сократить время выполнения очередных команд программы.

Микропроцессоры, начиная от МП 80486, имеют свою встроенную кэш-память. Микропроцессоры Pentium и Реntium Pro имеют кэш-память отдельно для данных и отдельно для команд. Для всех микропроцессоров может использоваться дополнительная кэш-память, размещаемая на материнской плате вне микропроцессора, емкость которой может достигать нескольких Мбайт. Внешняя память относится к внешним устройствам компьютера и используется для долговременного хранения любой информации, которая может потребоваться для решения задач. В частности, во внешней памяти хранятся все программное обеспечение компьютера.

Устройства внешней памяти - внешние запоминающие устройства - весьма разнообразны. Их можно классифицировать по виду носителя, по типу конструкции, по принципу записи и считывания информации, по методу доступа и т. д.

Наиболее распространенными внешними запоминающими устройствами являются:

    накопители на жестких магнитных дисках (НЖМД);

    накопители на гибких магнитных дисках (НГМД);

    накопители на оптических дисках (CD-ROM).

Реже в качестве устройств внешней памяти персонального компьютера используются запоминающие устройства на кассетной магнитной ленте - стримеры.

Накопители на дисках - это устройства для чтения и записи с магнитных или оптических носителей. Назначение этих накопителей - хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство.

НЖМД и НГМД различаются лишь конструктивно, объемами хранимой информации и временем поиска, записи и считывания информации.

В качестве запоминающей среды у магнитных дисков используются магнитные материалы со специальными свойствами, позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры 0 и 1. Информация на магнитные диски записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек (треков). Количество дорожек на диске и их информационная емкость зависят от типа диска, конструкции накопителя, качества магнитных головок и магнитного покрытия. Каждая дорожка разбита на секторы. В одном секторе обычно размещается 512 байт данных. Обмен данными между накопителем на магнитном диске и оперативной памятью осуществляется последовательно целым числом секторов. Для жесткого магнитного диска используется также понятие цилиндра - совокупности дорожек, находящихся на одинаковом расстоянии от центра диска.

Диски относятся к машинным носителям информации с прямым доступом. Это означает, что компьютер может обратиться к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни, находилась головка записи и чтения накопителя.

Все диски - и магнитные, и оптические - характеризуются своим диаметром (форм-фактором). Из гибких магнитных дисков наибольшее распространение получили диски диаметром 3,5(89 мм). Емкость этих дисков составляет 1,2 и 1,44 Мбайт.

Накопители на жестких магнитных дисках получили название «винчестер». Этот термин возник из жаргонного названия первой модели жесткого диска, имевшего 30 дорожек по 30 секторов каждая, что случайно совпало с калибром охотничьего ружья «винчестер». Емкость накопителя на жестком магнитном диске измеряется в Мбайтах и Гбайтах.

В последнее время появились новые накопители на магнитных дисках - ZIP-диске - переносные устройства емкостью 230-280 Мбайт.

В последние годы самое широкое распространение получили накопители на оптических дисках (CD-ROM). Благодаря маленьким размерам, большой емкости и надежности эти накопители становятся все более популярными. Емкость накопителей на оптических дисках - от 640 Мбайт и выше.

Оптические диски делятся на неперезаписываемые лазерно-оптические диски, перезаписываемые лазерно-оптические диски и перезаписываемые магнитооптические диски. Неперезаписываемые диски поставляются фирмами-изготовителями с уже записанной на них информацией. Запись информации на них возможна только в лабораторных условиях, вне компьютера.

Кроме основной своей характеристики - информационной емкости, дисковые накопители характеризуются и двумя временными показателями:

    временем доступа;

    скоростью считывания подряд расположенных байтов.

Постоянно запоминающие устройства (ПЗУ) динамического типа

Микросхемы ПЗУ по способу программирования, т. е занесения в них информации, подразделяют на три группы ПЗУ, однократно программируемые изготовителем по способу заказного фотошаблона (маски), масочные ПЗУ (ПЗУМ, ROM), ПЗУ, однократно программируемые пользователем по способу пережигания плавких перемычек на кристалле (ППЗУ, PROM), ПЗУ, многократно программируемые пользователем, репрограммируемые ПЗУ (РПЗУ, EPROM).


Рисунок 15. Устройство микросхемы масочного ПЗУ на биполярных структурах.

Рисунок 16. Элементы памяти ПЗУ на МДП транзисторах с программируемым пороговым напряжением

Общим свойством всех микросхем ПЗУ являются их многоразрядная (словарная) организация, режим считывания как основной режим работы и энергонезависимость. Вместе с тем у них есть и существенные различия в способе программирования, режимах считывания, в обращении с ними при применении. Поэтому целесообразно рассмотреть каждую группу микросхем ПЗУ отдельно.

Микросхемы ПЗУМ изготавливают по биполярной ТТЛ, ТТЛШ-технологии, n-канальной, p-канальной и КМДП-технологиям. Принцип построения у большинства микросхем группы ПЗУМ одинаков и может быть представлен структурой микросхем К155РЕ21--KI55PE24 (рис. 15) Основными элементами структурной схемы являются: матрица элементов памяти, дешифраторы строк DCX и столбцов DCY, селекторы (ключи выбора столбцов), адресный формирователь, усилители считывания Матрица состоит из массива ЭП, каждый из которых размещен на пересечении строки и столбца. Элемент памяти ПЗУМ представляет собой резистивную или полупроводниковую (диодную, транзисторную) перемычку между строкой и столбцом. Информацию в матрицу заносят в процессе изготовления микросхемы и осуществляют эту операцию в основном двумя разными технологическими способами.

Среди микросхем ПЗУМ разных серий (табл.1) многие имеют стандартные прошивки. Например, в микросхемы ПЗУМ К155РЕ21 -- К.155РЕ24 записаны соответственно коды букв русского РЕ21, латинского РЕ22 алфавитов, арифметических знаков и цифр РЕ23, дополнительных знаков РЕ24. В совокупности эти микросхемы образуют генератор символов на 96 знаков формата 7X5.

Одна из микросхем серии КР555РЕ4 содержит прошивку 160 символов, соответствующих 8-разрядному коду обмена информации КОИ 2--8 с форматом знаков 7X11 Прошивку кодов алфавитно-цифровых символов содержит микросхема КМШ56РЕ2.

Значительный перечень модификаций со стандартными прошивками имеет микросхема К505РЕЗ.

Две совместно применяемые микросхемы К505РЕЗ-002, К.505РЕЗ-003 содержат коды букв русского и латинского алфавитов, цифр, арифметических и дополнительных знаков и используются как генератор 96 символов формата 7X9 с горизонтальной разверткой знаков.

Таблица 1. Микросхемы масочных ПЗУ


Модификации 0059, 0060 имеют то* же назначение, но генерируют знаки формата 5X7 Модификации 0040--0049 содержат прошивки коэффициентов для быстрого преобразования Фурье. Ряд модификаций содержит прошивку функции синуса от 0 до 90° с дискретностью 10" (0051, 0052), от 0 до 45° (0068, 0069) и от 45 до 90° (0070,. 0071) с дискретностью 5". Модификации 0080, 0081 содержат прошивку функции Y = X" при Х = 1 ... 128.

Модификации микросхемы КР568РЕ2 содержат стандартные прошивки символов международного телеграфного кода № 2 форматов 5X7 и 7X9 (0001), символов русского и латинского алфавитов, кодовых таблиц, цифр и арифметических знаков (0003, 0Q11), функции синуса от 0 до 90° (0309), ассемблера (0303--0306), редактора текстов (0301, 0302).

Микросхема КР568РЕ2--0001 имеет прошивку международных телеграфных кодов № 2 и 5, а КР568РЕЗ-0002 -- редактора текстов для ассемблера.

Модификации микросхемы КР1610PE1 -0100--КР1610PE1 -0107 содержат прошивки программного обеспечения микро-ЭВМ «Искра».

Названные микросхемы ПЗУМ со стандартными прошивками следует рассматривать как примеры, число таких микросхем и их модификаций постоянно растет.

Для программирования микросхем ПЗУМ по заказу пользователя в технических условиях предусмотрена форма заказа.

Микросхемы ПЗУМ работают в режимах: хранения (невыборки) и считывания. Для считывания информации необходимо подать код адреса и разрешающие сигналы управления Назначение выводов микросхем ПЗУМ указано на рис. 17

Сигналы управления можно подавать уровнем 1, если вход CS прямой (рис. 17, б), или 0^ если вход инверсный (рис. 17, г)

Многие микросхемы имеют несколько входов управления (рис. 17, а), обычно связанных определенным логическим оператором. В таких микросхемах необходимо подавать на управляющие входы определенную комбинацию сигналов, например 00 (рис. 17, а) или 110 (рис 17, в), чтобы сформировать условие разрешения считывания

Основным динамическим параметром микросхем ПЗУМ является время выборки адреса. При необходимости стробировать выходные сигналы на управляющие входы CS следует подавать импульсы после поступления кода адреса. В таком случае в расчет времени считывания надо принимать время установления сигнала CS относительно адреса и время выбора. У микросхемы КР1610РЕ1 предусмотрен дополнительный сигнал ОЕ для управления выходом.

Выходные сигналы у всех микросхем ПЗУМ имеют ТТЛ-уровни. Выходы построены в основном по схеме с тремя состояниями.

Рисунок 17. Микросхемы масочных ПЗУ

Для снижения потребляемой мощности некоторые микросхемы, например К.596РЕ1, допускают применение режима импульсного питания, при котором питание на микросхему подают только при считывании информации.

Устойчивая тенденция к функциональному усложнению БИС памяти проявляется и в микросхемах ПЗУМ: в их структуру встраивают интерфейсные узлы для сопряжения со стандартной магистралью и для объединения микросхем в модуль ПЗУ без дополнительных дешифраторов К1801РЕ1. К1809РЕ1, устройства для самоконтроля и исправления ошибок КА596РЕ2, К563РЕ2.

Микросхемы К1801 РЕ 1 и К1809РЕ1 имеют много общего в назначении, устройстве и режимах работы. Назначение выводов микросхем показано на рис.17, и. Обе микросхемы предназначены для работы в составе аппаратуры со стандартной системной магистралью для микроЭВМ: встроенное в их структуру устройство управления (контроллер) позволяет подключать микросхемы непосредственно к магистрали. Как микросхемы ПЗУМ они содержат матрицу емкостью 65384 ЭП, регистры и дешифраторы кода адреса, селекторы, имеют организацию 4КХ16 бит Информация заносится по картам заказа изготовителем.

В структуру встроены также 3-разрядный регистр с «зашитым» кодом адреса микросхемы и схема сравнения для выбора микросхемы в магистрали. Наличие встроенного устройства адресации позволяет включать в магистраль до восьми микросхем одновременно без дополнительных устройств сопряжения

Особенностью микросхем, обусловленной их назначением, является совмещение адресных входов Al--A15 и выходов данных DOo--DO15. Выходные формирователи выполнены по схеме на три состояния. Три старших разряда кода адреса Ац--A13 предназначены для выбора микросхемы, остальные разряды Ats-- At для выборки считываемого слова. Разрешение на прием основного адреса формирует схема сравнения по результату сопоставления принятого и «зашитого» адресов микросхемы. Принятый адрес фиксируется на адресном регистре, а входы-выходы переходят в третье состояние.

Система управляющих сигналов включает: DIN -- разрешение чтения данных из ОЗУ (иначе RD); SYNC -- синхронизация

обмена (иначе СЕ --разрешение- обращения), CS -- выбор микросхемы, RPLY -- выходной сигнал готовности данных

сопровождает информацию DOo-- DO15, считываемую в магистраль.

Режим хранения обеспечивается сигналами SYNC = 1 или CS = 1. В режиме считывания время обращения к микросхеме определяет сигнал SYNC =0. Кроме него поступают сигналы кода адреса на выводы ADOi--ADO15 и CS =0. При совпадении адреса ADO15--ADO13 с адресом микросхемы во входной регистр "поступает адрес считываемого слова, а выводы ADO,--ADO15 переходят в третье состояние. Считанное слово из матрицы записывается в выходной регистр данных и по сигналу DIN =0 появляется на выходах РО0--РО}

Публикации по теме